
AWS Glue
drives faster data
ingestion pipeline

Case Study

• An automotive startup whose infrastructure
was struggling with large ETL workloads

• How it faced ever-increasing processing times
and an escalating infrastructure cost

• Why Creative Capsule recommended a modern ETL
architecture based on distributed AWS cloud
computing

• How this architecture cut processing times by 70%,
and reduced the DevOps time and OpEx by 50%

In this case study, we tell the story of:

AWS Glue Amazon EMR Amazon Athena AWS Lambda

Case Study — AWS Glue drives faster data ingestion pipeline

2

Creative Capsule played a crucial role in our ETL growth management.
As our data grew, it became increasingly challenging to swiftly ingest, normalize,
and effectively use the data. Creative Capsule expertly identified our needs,
presented viable options to fulfill them, and then successfully implemented the
plan within the agreed budget and time, enabling us to achieve the necessary
data throughput that is essential for our operation.

Chris Nickols
VP of Technology, OneRequest

About the client
OneRequest is a marketplace startup built on the
AWS cloud and designed to disrupt the traditional
process of buying and selling cars. It aims to
personalize the experience of buying, selling, and
trading cars by eliminating the typical stress and
frustration of the process while protecting the
privacy and interests of the buyer. It enhances the
user experience with a range of services, such as
car-buying concierge, comparison tools, anonymous
messaging with car dealerships, automotive reviews,
and shopping advice.

A key differentiator of OneRequest is its massive,
seller-agnostic car inventory, allowing the buyer
to see all the cars on the market that meet their
requirements. However, attempting to interact
with this huge inventory resulted in issues with
performance and efficiency. This case study
delves into each of the challenges the startup
faced and the measures taken to address them.

Case Study — AWS Glue drives faster data ingestion pipeline

3

Unraveling the problem
During OneRequest’s initial years of operation, the startup's vehicle inventory was updated every day with
over 2.5 million cars, which involved processing 30 to 150 GB of data from third-party vendors. This process
was extremely time-consuming as the raw data from vendors was not optimally organized and needed
several pre-processing steps. The entire process would take anywhere between 6 to 18 hours daily.
Moreover, the Amazon Aurora technology used for storage and data processing was not optimal for
processing large volumes of data and led to latency issues.

Occasionally, the technical team had to manually synchronize the inventory data with the latest market data
to resolve any inconsistent data sent by the third party. Besides this, the AWS infrastructure cost was
growing at the rate of 15% per month for AWS RDS alone. Continuing with the existing process would have
resulted in the monthly AWS cost increasing by a further 20%.

Another factor that limited scalability was the use of a centralized, monolithic relational database. With the
client’s growing data processing demands, the existing infrastructure — developed four years earlier during
the company's MVP phase — was not easily scalable. A fresh approach using newly available and technically
mature technology was called for.

To scale up the product, the client needed to

1 Reduce latency in ingesting the data
from third-party vendors

2 Improve processing speeds

3 Optimize the AWS infrastructure cost

4 Rethink the database solution

Creative Capsule’s team of cloud developers, ETL experts, database architects, and quality assurance
engineers undertook a major initiative to increase the speed, efficiency, and cost-effectiveness of the
data engine.

By introducing a new distributed processing architecture, Creative Capsule aimed at processing 3 TB of data
per day at 3x the speed of the existing data pipeline. This new setup resulted in a 50 percent reduction in
costs.

At the core of the new architecture is AWS Glue, a fully managed ETL service. AWS Glue jobs (ETL jobs) are
implemented using the Apache Spark framework, an open-source distributed computing system designed for
big data processing and analytics.

New architecture for speed and savings

The storage framework for the data is implemented using Delta Lake, an open-source storage layer that brings
greater reliability to data lakes. It not only functions as a library on top of Spark — an open-source unified
analytics engine for large-scale data processing — but provides a new output format that will read and write
so-called Delta tables.

Delta tables store Parquet files, which contain the actual data, as well as metadata such as the schema and a
transaction log. The transaction log enables Delta Lake to perform ACID transactions which help protect data
validity despite errors, power failures, and other mishaps. The data used by Spark is stored on the Amazon S3
standard storage class.

The pipeline begins by loading the third-party data files via SFTP to Amazon S3. This process is facilitated by
AWS Glue jobs, which are triggered as soon as the data files arrive at the SFTP server. The new vehicle data is
received in two different files, NeoVIN, which has the pricing information, and Inventory Schema, which has the
latest inventory in the market. AWS EventBridge listens for the event of loading data files into S3 and triggers
Amazon EC2 Batch jobs. Instead of processing the massive daily load files at once, the files are now split into
smaller chunks using the EC2 Batch jobs, enabling distributed processing.

Once the files have been split, an automated workflow step sends them to AWS Glue for processing. The
processing is divided into multiple steps or stages, each handled by a specific Glue job. The workflow
orchestrates the execution of these Glue jobs, ensuring that each job is executed in the correct order with the
proper dependencies.

This precise, automated orchestration of steps ensures the smooth flow of data through the various stages of
processing. Finally, to complete the workflow, some Glue jobs are dedicated to merging the processed data
with the existing data in Delta Lake.

Fast and efficient data engine architecture

Load NeoVIN zip file
from FTP into S3 bucket

Load inventory zip files
(i.e. dealer, used, new)
from FTP into S3 bucket

AWS Transfer
via SFTP

Third-party
data source

Extract inventory
zip files from S3
into multiple
CSV files

DATA PROCESSING

Extract NeoVIN
zip file from S3 into
multiple CSV files

STORAGE SYSTEM

Data analysis and querying tools

Main
database server

INGESTION

4

Case Study — AWS Glue drives faster data ingestion pipeline

Once the new architecture was implemented, Creative Capsule’s team focused their attention on other areas
that were impeding performance and elevating the infrastructure costs:

Going beyond: Streamlining the data engine

5 Selecting a storage solution with CRUD support:
The development team extensively researched a storage solution that could efficiently support CRUD
operations and be rapidly set up. After narrowing down the options, Delta Lake emerged as the ideal
choice for this project due to its superior capabilities in handling CRUD operations.

Optimizing the data storage policy:
The team devised lifecycle management policies for Amazon S3, which were implemented to remove
unwanted feed data older than six days. This reduced the storage space occupied by S3 and,
consequently, reduced costs.

1

Eliminating idle processing using AWS Glue triggers:
The earlier system used a scheduled AWS Batch job which ran on a dedicated Amazon EC2 instance
configured specifically for this task. The job would consistently monitor the FTP server at 30-minute
intervals to check if files were available. This added significant costs and proved highly inefficient as
the EC2 instance remained idle for 90% of the time. The Creative Capsule team replaced this batch
job with an AWS Glue job, activated every 30 minutes via AWS Glue triggers, thus removing the need
for an EC2 instance.

Revamping jobs to reduce AWS Glue DPUs (Data Processing Units):
Once the NeoVIN data was partitioned, the team reconfigured the AWS Glue jobs responsible for
processing NeoVIN data to operate with a reduced number of DPUs (Data Processing Units). This
optimization led to a remarkable 50% reduction in the cost of processing the NeoVIN data.

2
3

Addressing NeoVIN data processing memory errors:
As the data size increased over time, we encountered out-of-memory issues with Glue jobs that
processed the NeoVIN data. To address these issues, the team implemented vertical scaling, which
involves increasing the number of workers or changing the worker type from G.1X to G.2X. This
approach helped resolve the issue in the short term; however, it led to an increase in the monthly
AWS cost. So our team further optimized the approach by implementing the following steps:

Archived inactive NeoVIN data, older than 6 months, to Amazon S3 to reduce data size and
improve performance.
Implemented Delta table partitioning, organizing the data into separate folders for each year.
Implemented partition pruning logic that resulted in iterative processing of each year’s data with
reduced file scanning. This optimization significantly alleviated memory utilization during
job execution.
Adjusted the Spark configurations to decrease the size of Parquet files generated after processing.

4

5

Case Study — AWS Glue drives faster data ingestion pipeline

Cleaning up, transforming, and migrating data:
The data exported from Amazon Aurora in CSV format had escape characters and multiline data.
The NeoVIN files were large, with 30-40 columns, including JSON data. During the export, AWS
Aurora split the files into smaller chunks, which led to missing headers in some files. This was
resolved using Spark read options for reading CSV data. The team optimized the export process to be
cost-effective while also making it more reliable than before.

6

The resulting architecture and solution led to a more
dependable, sustainable, cost-effective, and
optimized solution that would allow the business to
process ever-increasing amounts of data and allow
the business to scale without being bogged down by
performance and data issues. The new architecture
also saves significant DevOps time in provisioning
and managing the complex infrastructure.

The team also ensured faster deployments by
processing smaller chunks of data and having a
multi-step process for deployments to optimize the
usage of AWS Glue jobs.

This project took a little over 2.5 months to
complete and the team ensured that costs were
kept low throughout the development cycle with
faster turnarounds.

The Creative Capsule team not only resolved the
client's immediate performance and cost concerns
but also delved deeper into understanding the pain
points and effectively addressed them. As a result,
they delivered a robust solution equipped with
technology that aligned with the client's present
and future requirements.

Benefits of the new data engine

Enhanced data handling scalability
from GB to TB

3x improvement in efficiency
and performance

Automated infrastructure
provisioning and management

70% reduction of data processing
time and faster deployments using
a multi-step process

Streamlined operations using
AWS serverless technology

50% reduction in DevOps time
and operational expenses

The Result: A sustainable, cost-effective solution

6

Case Study — AWS Glue drives faster data ingestion pipeline

About Us E

Our Partnerships

